
Abstract. A uni®ed treatment of one-electron two-
center integrals over noninteger n Slater-type orbitals is
described. Using an appropriate prolate spheroidal
coordinate system with the two atomic centers as foci,
all the molecular integrals are expressed by a single
analytical formula which can be readily and compactly
programmed. The analysis of the numerical performance
of the computational algorithm is also presented.

Key words: One-electron integrals ± Two-center
integrals ± Overlap integrals ± Slater-type orbitals ±
Noninteger ``quantum numbers''

1 Introduction

In molecular calculations based on the linear combina-
tion of atomic orbitals ± molecular orbitals approxima-
tion [1], the estimation of energies and other properties
of molecular systems requires the calculation of a great
number of molecular integrals over atomic orbitals. The
choice of reliable basis functions is of prime importance
in accurate quantum chemistry calculations since the
quality of several molecular properties may depend
strongly on the nature of these functions [2]. Slater-type
orbitals (STOs) would be desirable for basis sets in
molecular calculations because they can satisfy two
primordial mathematical conditions for atomic electron-
ic distributions: namely, the cusp condition at the origin
[3] and the exponential decay at long range [4±6].
Unfortunately, this kind of function has never been used
extensively in accurate ab initio quantum chemistry
calculations. Indeed, most ab initio calculations are
carried out by employing Gaussian-type orbitals (GTOs)
[7, 8] in spite of their poor representation of the
electronic density near the nucleus and at large distances.
The popularity of Gaussian functions is essentially due
to the fact that numerous multicenter molecular inte-

grals may be computed with great ease; however, a large
number of GTOs have to be used in large-scale
calculations, which leads to more computational cost.
Therefore, interest in using STOs in ab initio packages
has recently risen again, especially for investigations in
which the behavior of the wave function at very short or
long distances from a nucleus is essential, but also for
cutting down the number of basis functions to be used in
a calculation. We note that many researchers hope that
the next generation of ab initio programs will be based
on the usage of STOs [9, 10]; therefore, it does not seem
impossible to envisage that STOs may compete with
GTOs in accurate molecular calculations in the near
future. Indeed, much e�ort is being made to develop
e�cient molecular algorithms for integrals over conven-
tional STOs or other related basis functions [11±13].

Several approaches to the calculation of molecular
integrals with STOs and other exponential-type orbitals
can be found in the literature [14]. Although the exten-
sive literature on the calculation of one-electron two-
center integrals over STOs (Refs. [10±22], and references
therein) contains a great number of explicit formulas, the
large body of the formulas developed with integer n
STOs does not generally apply to noninteger n STOs
(NISTOs). Furthermore, most existing programs for the
calculation of molecular integrals are limited to positive
integer values of the principal quantum number and
cannot be used in the case of noninteger values of n;
however, it is well recognized that NISTOs provide a
more ¯exible basis for molecular calculations than
integer n STOs [23]. Although Slater's rules [24] for
determining n and f led to noninteger n for n > 3, it
was Parr and Joy [25] who ®rst advocated the use of
STOs with variationally determined noninteger values
of n > 0. Unfortunately, the idea of using NISTOs in
quantum chemistry calculations seems to have been
dormant for the last two decades. Some results on
atomic and molecular calculations using STOs with
noninteger n can be found in the literature [23±35]. Some
recent results on overlap integrals over NISTOs are also
available [36]. In the last few years, extensive work due
to Koga and coworkers has proven that the extension of
the STO principal quantum number from integer toCorrespondence to: A. Baba-Ahmed
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noninteger values considerably improves the quality of
the single-zeta [37±39] and the double-zeta [40] wave
functions. The energies calculated over NISTOs and
compared with numerical Hartree±Fock energies prove
that NISTOs lead to better atomic energies than con-
ventional integer n STOs [37±40]. Moreover, it has been
demonstrated [38] that the advantages of NISTOs over
conventional STOs increase for higher angular momen-
tum quantum numbers. However, given the over-
whelming dominance of GTOs, it is realistic to ask what,
if any, niche NISTOs can occupy in contemporary
computational quantum chemistry. Since the advantages
of NISTOs will be greatest for minimal basis sets and for
systems with occupied d- and f-type atomic orbitals, this
convenient basis set can be useful for the study of the
electronic structure of large molecules and clusters con-
taining transition metals and other heavy atoms.

In a previous paper [36], we presented an e�cient
algorithm for the calculation of some one-electron two-
center integrals over STOs with possible noninteger
values of the principal ``quantum numbers''. Using a
prolate spheroidal coordinate system, explicit formulas
for overlap, kinetic energy and nuclear attraction inte-
grals were developed in terms of the so-called ``sigma''
function, which depends on the quantum numbers and
scaling parameters and on the internuclear distance. The
analysis of the numerical aspects of this auxiliary func-
tion and several numerical tests con®rmed that the
convergence and the numerical stability of the algorithm
is guaranteed for a su�ciently wide range of atomic
orbital parameters (quantum numbers and scaling pa-
rameters) and internuclear distances. Furthermore, the
algorithm seems to be able to provide accurate and rapid
estimates of all these integrals.

In the present work, we present a uni®ed analytical
treatment of all one-electron two-center integrals of the
formZ

d3r vnlmf�r�
� ��

M̂ v0n0l0mf0 �rÿ R�
h i

; �1�

where v and v0 are two NISTOs centered on the nuclei A
and B, respectively, and M̂ is a general one-electron
operator (M̂ � 1; 1=r; ÿD=2; z; z2; x2 � y2; x� iy;
. . .). Only three types of one-electron integrals occur in
the Hamiltonian matrix, according to the three di�erent
one-electron operators, i.e., the identity, the Laplacian,
and the Coulomb operator for overlap, kinetic energy,
and nuclear attraction integrals, respectively. The other
one-electron operators are needed for the calculation of
transition probabilities, coupling constants, and several
electric andmagnetic molecular quantities. It is of interest
to note that the overlap integrals are needed in both
semiempirical and ab initio quantum chemical calcula-
tions. They are also used to introduce new strategies for
more complicated multicenter molecular integrals.

2 General de®nitions

The NISTOs are de®ned by

vnlmf�r� � Rnf�r�Yl;m�h;u� ; �2a�

Rnf�r� � Nnfrnÿ1 exp�ÿfr� ; �2b�

Nnf � �2f�n�1
2

C�2n� 1�� �1=2
: �2c�

In Eq. (2), C�z� is the gamma function and f is the
orbital exponent. Yl,m (h;u) is a normalized complex
spherical harmonic de®ned by the Condon-Shortley
phase condition [41, 42]:

Yl;m�h;u� � im�jmj 2l� 1� � lÿ jmj� �!
2 l� jmj� �!

� �1=2
� P jmjl �cos h�/m�u� ; �3�

where P m
l �x� are the associated Legendre functions and

/m�u� are the orthonormal functions de®ned as

/m�u� � �2p�ÿ1=2 exp�imu� : �4�
It is advantageous in our later developments to use the
expanded form of the associated Legendre functions
P m

l �x� which is given (for m � 0) by [43, 44]

P m
l �x� � �1ÿ x2�m=2

Xlÿm

u�0
Clmuxu ; �5�

where the expansion coe�cients Clmu are de®ned as
(Ref. [36], p. 845)

Clmu �
�ÿ1��lÿmÿu�=2 1� �ÿ1�lÿmÿu

h i
�l� m� u�!

2l�1u! ��lÿ mÿ u�=2�! ��l� m� u�=2�! : �6�

We note that the representation (Eqs. 5±6) of associated
Legendre functions and that given in Ref. [43] are
essentially the same.

3 Evaluation of one-electron two-center integrals involving
NISTOs

The two-center integrals de®ned by Eq. (1) can be,
conveniently, evaluated by means of a prolate spheroidal
coordinate system whose foci are the positions of the A
and B nuclei. On the other hand, since most di�erential
operators can be reduced to multiplicative operators, the
one-electron operator M̂ is therefore considered to be
purely multiplicative and in prolate spheroidal coordi-
nates can be written as [45]

M̂�n; g;u� � M̂�n; g� exp�isu� ; �7a�
where [45]

M̂�n; g� �
Xkmax

k�0
Xk�R=2�k�n� g�ak �nÿ g�bk �1� ng�ck

� �1ÿ ng�dk ��n2 ÿ 1��1ÿ g2��12ek ; �7b�
which is a simple sum with coe�cients Xk and a common
factor �R=2�k. The xk (i.e., ak; bk; ck; dk, and ek) are positive
or negative integers. A brief listing of the parameters
fs; k;Xk; xkg is given in Table 1. A more complete listing
of these parameters can be found in Ref. [45].
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Using the de®nitions of v and v0 given previously, and
after converting spherical coordinates into prolate
spheroidal coordinates and doing the u integration, the
one-electron two-center integral can be put in the
following form:

Mn0l0m0f0
nlmf �R� � d�m;m0 � s�NnfNn0f0 �R=2�n�n0�k�1

� Dmm0
ll0
Xkmax

k�0

Xlÿm

u�0

Xl0ÿm0

v�0
�ÿ1�hk

� ClmuCl0m0v

Z1
1

dn
Z�1
ÿ1

dg

� W �n; g� exp�ÿanÿ bg� ; �8a�
where

a � �R=2��f� f0� ; �8b�
b � �R=2��fÿ f0� ; �8c�

Dmm0
ll0 �

�2l� 1��2l0 � 1�
4

�lÿ m�! �l0 ÿ m0�!
�l� m�! �l0 � m0�!

� �1=2
; �8d�

and

W �n; g� � �n� g�nÿmÿu�ak �nÿ g�n0ÿm0ÿv�bk �1� ng�u�ck

� �1ÿ ng�v�dk ��n2 ÿ 1��m�1
2ek ��1ÿ g�2�m0�1

2ek :

�8e�
The factor d�m;m0 � s�, which appears in Eq. (8a), is just
the Kronecker symbol.

In Eq. (8e), the exponents �nÿ mÿ u� ak� and
�n0 ÿ m0 ÿ v� bk� have noninteger values for noninteger
principal ``quantum numbers'' n and n0. We also note
that the elliptical coordinates n and g are limited by
1 � n � 1 and ÿ1 � g � 1, respectively; hence, the
condition jnj � jgj is satis®ed.

Using the well-known binomial relationships

�a� b�n �
Xn

k�0

n
k

� �
anÿkbk; �for an integer n� �9a�

and

�a� b�x �
X1
k�0

x

k

� �
axÿkbk

�for an arbitrary real or complex x and jaj > jbj� �9b�
with

x
k

� �
� �ÿ1�k �ÿx�k

k!
; �9c�

where the Pochhammer symbols �x�k are de®ned by the
following relationships

�x�0 � 1

�x�k � x�xÿ 1��xÿ 2� . . . �x� k ÿ 1� � C�x�k�
C�x� ;

(
�9d�

and after some straightforward algebraic simpli®cation,
the one-electron two-center integral can be put in the
following ®nal form:

Mn0l0m0f0
nlmf �R�
� d�m;m0 � s�NnfNn0f0 �R=2�n�n0�k�1Dmm0

ll0

�
Xkmax

k�0

X1
p�0

X1
p0�0

Xlÿm

u�0

Xl0ÿm

v�0

Xm�12ek

q�0

Xm0�12ek

q0�0

Xu�ck

t�0

Xv�dk

t0�0
�ÿ1�hk

� Xk Clmu Cl0m0v
nÿ mÿ u� ak

p

� �
� nÿ mÿ v� bk

p0

� �
m� 1

2ek

q

 !
m0 � 1

2ek

q0

 !

� u� ck

t

� �
v� dk

t0

� �
Aik �a� Bjk �b� ; �11a�

where

ik � n� n0 ÿ mÿ m0 ÿ p ÿ p0

� 2qÿ t ÿ t0 � ak � bk � ck ; �11b�
jk � p � p0 � m� m0 ÿ 2q0 � uÿ t

� vÿ t0 � ck � dk � ek ; �11c�
hk � p0 ÿ qÿ q0 � m� m0 � 2vÿ t0 � dk � ek : �11d�

Table 1. One-electron coe�-
cients M̂ s k W0 a0 B0 c0 d0 e0 W1 a1 b1 c1 d1 e1

1 0 0 1 0 0 0 0 0
rÿn

A 0 )n 1 )n 0 0 0 0
rÿn

B 0 )n 1 0 )n 0 0 0
z 0 1 1 0 0 0 0 0 )1 0 0 0 1 0
x� iy �1 1 1 0 0 0 0 1
rn

A 0 n 1 n 0 0 0 0
rn

B 0 n 1 0 n 0 0 0
cosnhA 0 0 1 )n 0 n 0 0
cosnhB 0 0 1 0 )n 0 n 0
sinnhA 0 0 1 )n 0 0 0 n
sinnhB 0 0 1 0 )n 0 0 n
z2 0 2 1 0 0 0 0 0 )1 0 0 1 1 0
x2 � y2 0 2 1 0 0 0 0 2
z�x� iy� �1 2 1 0 0 0 0 1 )1 )1 0 0 1 1

�x� iy�2 �2 2 1 0 0 0 0 2
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Aik �a� and Bjk �b� are two additional functions de®ned by

Aik �a� �
Z1
1

dnnik exp�ÿan� ; �12�

Bjk �b� �
Z1
ÿ1

dggjk exp�ÿbg� ; �13�

where a (see Eq. 8b) is a positive real number. The
parameter b is de®ned by Eq. (8c).
Since the numerical performance (accuracy, speed,
numerical stability, etc) is the decisive criterion for
practical applicability of any molecular integral algo-
rithm, the study of the numerical aspects of the proposed
algorithm is of prime importance.

4 Numerical discussion

The aim of this section is to discuss the e�ciency of the
computational algorithm based on Eq. (11a). Now, the
question that arises concerns the convergence of this
in®nite series representation. The quantities which
depend on p and/or p0 are the auxiliary functions
Aik �a� and Bjk �b�, and the binomial coe�cients

nÿ mÿ u� ak

p

� �
and

n0 ÿ m0 ÿ v� bk

p0

� �
: If the

existence of the functions Aik �a� (Eq.12) for arbitrary
real ik is a triviality, there is no di�culty to show the
existence of the function Bjk �b� (Eq. 13) for all positive
values of jk. We note that the index jk is limited by

0 � jk � pmax � p0max � m� m0 � u� v� ck � dk � ek :

�14�
On the other hand, the asymptotic estimate of

� x
p

�
when p!1 (Ref. [36], p. 847) proves that the term (see
Eq. 11a) depending on p can be bounded above, in

absolute value, by a series of the Riemann type (i.e., Cx
px�1

with x>0), which is obviously convergent. The Aik �a�
and Bjk �b� integrals depending on p do not occur in the
convergence since they can be bounded above by a
constant independent of p. An analogous construction
can be done for p0.

4.1 Evaluation of the integrals Aik �a�

The integrals Aik �a� can be conveniently expressed, for
noninteger values of the index ik, with the aid of the
incomplete gamma function, as follows:

Aik �a� � aÿikÿ1C�ik � 1; a� ; �15�
where a (see Eq. 8a) is a positive real number. The index
ik (see Eq. 11b) depends on the nature of the sum n� n0
(i.e., ik is noninteger if n� n0 is noninteger). The
incomplete gamma function C�a; x� is de®ned as [46]

C�a; x� �
Z1
x

zaÿ1eÿz dz; a 2 C and x 2 Sp �16�

where Sp � fx 2 C : jarg xj < pg
Obviously the calculation of the function Aik �a� can

be reduced to the calculation of the incomplete gamma
function C�a; x� or eventually its complementary in-
complete gamma function c�a; x�, which are related to
each other by (Ref. [46], p. 942)

C�a; x� � c�a; x� � C�a�; a =2 �0;ÿ1;ÿ2; . . .�; x 2 Sp

�17�
where C�a� denotes the complete gamma function.

In order to evaluate the special functions C�a; x� and
c�a; x� with an accurate and numerically stable algo-
rithm, we implemented in our computational algorithm
the routines GSER and GCF, which are available from
the Fortran numerical recipes library [47]. These con-
venient routines are based on the usage of the following
expressions:

c�a; x� � eÿxxaC�a�
X1
n�0

xn

C�a� n� 1�;

a =2 �0;ÿ1;ÿ2; . . .�; x 2 Sp �18�
C�a; x� � eÿxxaK�a; x�; a =2 �0;ÿ1;ÿ2; :::�; x 2 Sp

�19�
where K�a; x� denotes the regular continued fraction in
xÿ1[48]:

K�a; x� � xÿ1

1�
�1ÿ a�xÿ1

1�
1xÿ1

1�
�2ÿ a�xÿ1

1�
2xÿ1

1� . . . ;

a =2 �0;ÿ1;ÿ2; . . .�; x 2 Sp : �20�
For each a, the continued fraction (Eq. 20) converges
uniformly, on every subset of Sp (see, e.g., Ref. [49],
Sect. 9.6.17 and Ref. [50], Sect. 92). On the other hand ±
as we have already mentioned ± since the parameter a
cannot take zero or negative values, the continued
fraction (Eq. 19) can be considered as a very useful
numerical tool for all positive real values of x. On the
other hand, it turns out that the in®nite series represen-
tation (Eq. 18) converges rapidly for x less than about
a� 1, while the continued fraction representation
(Eq. 19) converges rapidly for x greater than about
a� 1. Thus, by using either Eq. (18) or (19) the
incomplete gamma function can be computed e�ciently
and accurately for all positive values of a and x.

For negative values of a, we used a recurrence for-
mula (Ref. [48], Eq. 2.9) which is valid for all real or
complex values of a and nonnegative integer values of k:

ex

xa C�a; x� � xk

�a�k
K�a� k; x� ÿ

Xkÿ1
i�0

xi

�a�i�1
;

a =2 �ÿk � 1;ÿk � 2;ÿk � 3; . . .� and x 2 Sp : �21�
The notation K�a; x� is de®ned by Eq. (20), and the
Pochhammer symbol �a�k is de®ned by Eq. (9d).

4.2 Evaluation of the integrals Bjk �b�

Since the index jk (Eq. 11c) takes only positive and
integer values, the simplest way of calculating the
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function Bjk �b� (Eq. 13) is through its recurrence
formula:

Bjk �b� � jkBjÿ1k
�b� � �ÿ1�jkeb ÿ eÿb

h i
=b �22a�

with

B0�b� � eb ÿ eÿb
� �

=b : �22b�
Unfortunately, the recurrence formula (Eq. 22a) is not
able to provide an accurate estimate of the function
Bjk �b� for large values of b and jk; therefore, it is more
convenient to use the following in®nite-series represen-
tation:

Bjk �b� �
X1
k�0

�ÿb�k�1ÿ �ÿ1�k�jk�1�
�k!�k � jk � 1�� : �23�

The programs were written in the Fortran programming
language and were implemented using a personal
computer (Pentium processor, 166 MHz, 16 MB
RAM). To have a fairly good idea about the conver-
gence of the in®nite-series representation given by
Eq. (11a), we have reported in Table 2 some test values
for the overlap integral (M̂ � 1) involving the parame-
ters n � 5:7, n0 � 3:8, l � m � l0 � m0 � 1, f � 2:1,
f0 � 1:3, and R � 1:4 a.u. From the values presented in
this table, it might be observed that only six decimal
digits are correct (with pmax � p0max � 11) if the calcula-
tions are done in single precision, while an accuracy of
16 decimal places is reached (with pmax � p0max � 63)
with a program written in double precision.

The computations were performed for a wide range
of physically signi®cant atomic parameters (n, l, m, f, n0,
l0, m0, and f0) and internuclear distances. The principal
``quantum numbers'' n and n0 are considered to be
nonintegers. Several other one-electron two-center
integrals could be calculated using Eq. (11a). For this
purpose, a set of parameters has to be de®ned for each
one-electron operator (see, e.g., Ref. [45], p. 2585).

We have listed some test values for the two-center
overlap integral (M̂ � 1) with di�erent quantum num-
bers, scaling parameters, and internuclear distances in
Table 3. In the tenth column we list the number of terms
of the in®nite-series representation (Eq. 11a) which is
required to obtain an accuracy of 12 decimal places. In
the 12th column we list the computation time required
for the calculations. Unfortunately, because of the un-
availability of literature values of overlap integrals with
NISTOs, it was not possible for us to compare our
values and to comment on how well literature values are
reproduced.

5 Conclusion

A uni®ed analytical treatment of one-electron two-center
integrals over STOs was presented. A single analytical

pmax Eq. (11a)a Eq. (11a)b

0 0.93580729 0.9358077680226358
1 0.71719515 0.7171956850867207
2 0.88627970 0.8862803023791527
3 0.86400998 0.8640105620763281
4 0.86700732 0.8670079659493909
5 0.86689150 0.8668923730510802
6 0.86688894 0.8668897405520058
7 0.86688870 0.8668895238595778
8 0.86688852 0.8668894882666365
9 0.86688840 0.8668894809586378
10 0.86688834 0.8668894786207930
11 0.86688834 0.8668894777123034
12 0.8668894773178845
13 0.8668894771401665
14 0.8668894770520387
15 0.8668894770059326
16 0.8668894769802845
17 0.8668894769654508
18 0.8668894769564992
19 0.8668894769509344
20 0.8668894769473651
21 0.8668894769450214
22 0.8668894769434466
23 0.8668894769423660
24 0.8668894769416112
25 0.8668894769410755
26 0.8668894769406896
27 0.8668894769404071
28 0.8668894769401985
29 0.8668894769400428
30 0.8668894769399250
31 0.8668894769398346
32 0.8668894769397657
33 0.8668894769397117
34 0.8668894769396697
35 0.8668894769396365
36 0.8668894769396100
37 0.8668894769395890
38 0.8668894769395724
39 0.8668894769395591
40 0.8668894769395481
41 0.8668894769395384
42 0.8668894769395304
43 0.8668894769395239
44 0.8668894769395186
45 0.8668894769395145
46 0.8668894769395113
47 0.8668894769395077
48 0.8668894769395052
49 0.8668894769395026
50 0.8668894769395015
51 0.8668894769394991
52 0.8668894769394975
53 0.8668894769394961
54 0.8668894769394948
55 0.8668894769394934
56 0.8668894769394924
57 0.8668894769394917
58 0.8668894769394913
59 0.8668894769394906
60 0.8668894769394899
61 0.8668894769394890
62 0.8668894769394884
63 0.8668894769394884

aResults obtained with Fortran single precision
bResults obtained with Fortran double precision

Table 2. Convergence of the expression (Eq. 11a) for the overlap
integral with n = 5.7, n¢ = 3.8, l = m = l¢ = m¢ = 1, f = 2.1,
f¢ = 1.3, and R = 1.4 a.u

c
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formula (Eq. 11a) for carrying out the computation of
all these interesting molecular integrals was derived, and
an analysis of the numerical aspects of this formula
reveals its stability for a wide range of quantum
numbers, scaling parameters, and internuclear distances.
The algorithm proposed in this work can be useful for
the calculation of one-electron integrals occurring in the
construction of the Hamiltonian matrix needed in
ab initio and semiempirical methods. It could also be
useful for the calculation of several electric and magnetic
quantities which can be represented by one-electron
operators.
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Table 3. Overlap integrals
between orbital v¢(n¢l¢m¢f¢) lo-
cated at the origin (0, 0, 0) and
v(n l m f) located at (0, 0, R).
Numbers in parantheses denote
powers of 10

R n l m f n¢ l¢ m¢ f¢ Pmax Eq. (11a)a Timeb

1.0 7.3 4 4 3.0 7.3 4 4 1.0 8 0.101734314960 9
1.4 3.8 0 0 2.2 5.5 0 0 1.1 37 0.290802069369 22
1.4 5.7 1 1 2.1 3.8 1 1 1.3 24 0.866889476942 15
3.0 6.4 1 0 0.9 6.4 0 0 2.5 41 0.312095409105 36
3.0 10.3 0 0 2.5 10.3 9 0 1.0 23 0.152926483369 ()4) 72
5.0 4.1 2 2 2.3 3.7 2 2 1.8 24 0.293217486171 ()1) 25
5.0 7.7 4 4 0.9 6.6 4 4 1.5 17 0.234831448531 31

aNormalization factors of the Slater-type orbitals have been included
bComputation time in milliseconds
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